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An examination of the scaling structure along with some extensive simulations on viscous fingering
in circular geometry strongly suggest that the asymptotic patterns are compact. Experiments and
simulations are in a transient regime that may exhibit a reasonable range where apparent fractal
growth may be found. Arguments to connect the case of viscous fingering with that of vanishing

surface tension are made.

PACS number(s): 47.20.—k, 47.55.Kf, 47.55.Mh, 68.10.—m

I. INTRODUCTION

When a less viscous fluid (say air) displaces a more vis-
cous fluid (say water) between the closely spaced plates of
a Hele-Shaw cell [1] in circular geometry, one might guess
that the pattern defined by the fluid-fluid interface which
ensues should be fractal. On large length scales one has a
“Laplacian problem” with the inherent screening effects
and, much like the case of diffusion-limited aggregation
(DLA) [2], deep valleys might be left behind leading to a
fractal structure (different in appearance from ordinary
DLA, however). In circular geometry there may be no
walls which, in rectangular geometry, can aid in produc-
ing regular shapes for the interface.

Unfortunately, the situation, both experimental and
theoretical, has been somewhat equivocal. Ben-Jacob
and co-workers [3, 4] advanced the notion of a dense-
branching morphology for describing a wide class of
growth processes in radial geometry (where tip splitting
must take place). In this morphology a many-fingered
configuration is enclosed by a compact, approximately
circular envelope. Such structures have been observed
in electrochemical deposition when the conductivity con-
trast is low [5, 6] or when diffusive effects are important
[7,8].

However, the situation for flow in a circular Hele-Shaw
cell has been troubling. Available experimental evidence
[9-11] and existing numerical solutions [12] have indi-
cated that the patterns which develop in a circular Hele-
Shaw cell, as a constant flux of a less viscous fluid dis-
places a more viscous one, are fractal with dimension
approximately that of diffusion-limited aggregation [2]
clusters (DLA), D ~ 1.7. Experiments by Couder [13],
and numerical simulations by Sander, Ramanial, and
Ben-Jacob [14], while not under constant-flux operat-
ing conditions, indicate similar results. But Ben-Jacob
and co-workers and Buka and co-workers [15, 16] found
that radial Hele-Shaw patterns did have the characteris-
tic compact structure. Perhaps additional confusion was
provided by Yeung and Jasnow [17], who reconsidered
the quasilinear analysis of flow in circular Hele-Shaw ge-
ometry advanced in Refs. [3,4]. They showed that, in
contrast to the constant-pressure case, at constant flux
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there is no indication of a changeover to a compact struc-
ture. Furthermore, they suggested that the crossover in
the case of constant pressure may be due to boundary
conditions, namely a finite-size effect.

Some recent ideas on dimensional analysis contained
in a primitive coarse graining-rescaling of the equation
of motion of interfaces [18] suggested a new look at flow
in a circular Hele-Shaw cell under constant-flux condi-
tions. Dimensional analysis offers a connection: if the
asymptotic pattern is fractal, then the surface tension
introduces, to borrow terminology from critical phenom-
ena, anomalous dimension (see, e.g., [19, 20]). The scal-
ing analysis leads naturally to a method, which can be
generalized to a variety of other problems, for varying a
parameter to help determine if the data reflect asymp-
totic behavior. Armed with these ideas, more extensive
simulations can be brought to bear on the question of
asymptotic behavior, and on the evidence for anomalous
dimension. The conclusion, for which evidence is offered
below, is that under constant-flux conditions, radial Hele-
Shaw patterns are not asymptotically fractal. This does
not preclude the possibility of a range of data (both ex-
perimental and numerical) which may exhibit effective
fractal properties.

The remainder of this paper is set out as follows. In
the next section we briefly review the defining equations
for flow at constant flux and consider the consequences
of the dimensional analysis. We then review the evidence
provided by the present series of simulations in which the
flux and scale of the initial condition are systematically
varied.

II. VISCOUS FINGERING IN CIRCULAR
GEOMETRY

The defining equations for flow in circular Hele-Shaw
geometry (see, e.g., [12]) are

V=—MVP,
P|r=—doK,

/V -Ad4"1S = Q,
I

(2.1)

where d is the dimension of the bulk fluids and where we
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have assumed, for simplicity, that the displacing fluid is
inviscid. The subscript I indicates the limiting value at
the interface from the viscous-fluid side. Here we have
taken the pressure to be dimensionless, so that dp, which
is proportional to the surface tension, is a “microscopic”
capillary length, and K is the curvature. The flux Q is
constant in these operating conditions, and M denotes
the mobility, depending, in the usual fashion, on the dis-
placed liquid’s viscosity and the spacing between the par-
allel plates (see, e.g., [12]). We supplement these equa-
tions by a length Ry indicating the scale of the initial
condition.

We now look at the consequences of dimensional anal-
ysis; the description in terms of dimensionless func-
tions and variables is equivalent to the primitive coarse-
graining, rescaling approach introduced by Jasnow and
Vifials [18], and previous analysis by Sarkar [12,21]. In-
troducing scales (Po,Tp, Lo) for the pressure, time, and
length, one finds that the defining equations become

v=—Vp,

pIIZ—KZ,

/v-ﬁdd—ls=1,
I

where now p = P/Py and v = V/V = VTy/Lgy are
the reduced values, and « is the reduced curvature.
We have chosen the scale parameters to be Ly =
(doM/Q)Y/ G- Py = (Q/M)L2™¢, Ty, = LE/Q. Note
that Egs. (2.2) are parameter-free; hence, as pointed out
previously [12], the interface equation describing the qua-
sistatic evolution of the fluid-fluid boundary also contains
no parameters. The consequences are that there may be a
dependence on the initial conditions and that, in a regime
in which the effect of the initial conditions is negligible,
different physical realizations of the flows may be scaled
into one another by adjusting the scales Py, Ty, and Lg.
In what follows we specialize to the physical case d = 2.

‘We imagine a set of initial conditions, I', specified by a
length, Ry. To make contact with the numerical results
to be presented, I' can be thought of as circles of radius
Ry, slightly perturbed by an assortment of Fourier modes
such that the entire initial pattern has fourfold symme-
try. Any characteristic length, R(t), such as the radius
of gyration of the pattern, averaged over the set of initial
conditions, I', may now be expressed as Lo times a func-
tion of the only two dimensionless ratios, (¢/To, Ro/Lo),
ie.,

(2.2)

R(t) = LoFa(t/(L3/Q); Ro/Lo), (2.3)

where Fy(z;y) is a dimensionless function of its argu-
ments. It should be recalled that Ry sets the scale of
the initial condition, so that F(0;y) ~ y. We first as-
sume that the scale of the initial condition does not af-
fect the asymptotic value of R(t), and we will examine
this assumption below. For now suffice it to say that for
fixed “microscopic” parameters (Q, do, M), the radius of
gyration empirically approaches a fixed curve, and the
magnitude of Ry affects a crossover time. Hence, asymp-
totically

R(t) = LoF1(Qt/LY) = (Qt)Y/2F(Lo/(Qt)'/?).

This final expression has a very suggestive form. Note
that (Qt)/2 = L(t) is a macroscopic length scale. The
quantity Qt = A(t) — Ao = AA is the incremental area of
the pattern, which grows linearly in time in the constant-
flux mode. The expression for R(t) takes the asymptotic
form

R(t) = L(t)F(Lo/L(t)) ~ AY?f(Lo/AY?),

(2.4)

(2.5)

since, asymptotically, the initial area can be neglected.

Now, asymptotically, the macroscopic length L(t) —
00, so that Lg/L(t) — 0. Recall that the microscopic
length Lo is proportional to dp, which is itself propor-
tional to the surface tension. From Eq. (2.5) one sees
that in the growth kinetics the relative strength of the
surface tension reduces to zero asymptotically as t — oo
(18], i.e., on the large scales. Stretching an analogy with
critical phenomena, if there is no anomalous dimension,
F(z) — F(0) = const as ¢ — 0, the pattern grows as
R ~ A'Y? and is not fractal. On the other hand if the
limit is singular, namely

Fz)~z Pasz—0, (2.6)
one finds a fractal structure with
R(t) ~ fsLgPL(t)"?

~ fs(doM/Q) P AYP with D =2/(1 4+ 8),  (2.7)

where f; is a dimensionless, universal constant, inde-
pendent of system parameters. If 8 # 0 the relation
of the linear size of the pattern to the area indicates a
fractal structure, A ~ RP; in that event note that the
“anomalous exponent” ( is accompanied by the singu-
lar dependence of the “critical amplitude” on the micro-
scopic length Ly o dg.

In experiments noted above by Maher and co-workers
[9-11], and previous simulations [12], the pattern for
circular viscous fingering in the constant-flux mode ap-
peared to be fractal with 8 ~ 0.11-0.18, which trans-
lates to R ~ AYP with D = 1.7-1.8. However, the
dynamic range of the experimental and numerical data
is limited, and for limited data, a dimension in the above
range is extremely difficult to distinguish from the com-
pact D = d = 2. Here more extensive numerical solutions
are reported which focus on the dependence of the critical
amplitude and on the full scaling structure just described.
As argued above, assuming no Ry dependence, a fractal
structure goes hand-in-hand with a singular dependence
on the variable do/MQ. For technical reasons, it is diffi-
cult to vary dp; hence the flux is varied with the initial
scale of the pattern Ry held fixed [22]. This is accom-
plished by writing Q = ¢Qo, where Q) is a reference flux
that determines scale parameters as Lo = (doM/Qo), etc.
Then the last line of Eq. (2.2) is replaced by

/v-ﬁds=q,
I

where ¢ is a dimensionless relative flux. Fractal growth
will be indicated by the appearance of singular ¢ depen-
dence of the characteristic size of the structure, say, the

(2.8)
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radius of gyration, according to
R~ f,qPAYP, (2.9)

Here the tildes (subsequently dropped) are used to in-
dicate dimensionless numbers arising from a solution of
the dimensionless equations (2.2) with the replacement
(2.8).

Before turning to the numerical analysis, we consider
again the scaling description, specifically the limit of van-
ishing surface tension. Intuitively one expects DLA-like
behavior in this limit [1, 23], and it is useful to see the
implications on the scaling structure. Reintroducing the
dependence on the scale of the initial condition Ry, di-
mensional analysis requires

R = (AA)Y2f(Lo/(AA)Y? Ry/Ly),

where again Lo = doM/Q is proportional to the sur-
face tension. This suggests that to study the Ly = 0
limit (vanishing surface tension), one must find a differ-
ent scaling, in which Lg is eliminated. The effect is that
the scale of the initial condition, Ry, can never be re-
moved. (Another example of this feature is discussed in
Refs. [20, 24].) One expects in this limit

Jim f(z;9) = 9(av) = 9(Ro/(A4)"/?).

(2.10)

(2.11)

Furthermore, one would expect that as its argument van-
ishes, i.e., for large scales, g(z) ~ goz~#, where 3
is the appropriate DLA-like exponent corresponding to
D = 1.7. The strict limit dg = 0 may yield a different
anomalous dimension from the possibility previously dis-
cussed, so we allow 8’ # 8. We will return to a discussion
of the full scaling function in two variables, Eq. (2.10),
after presenting the numerical results.

III. NUMERICAL RESULTS

Numerical simulations have been carried out using the
boundary integral equation described by Sarkar and Jas-
now [12] with various code improvements developed by
Vifials and Jasnow (see, e.g., [25]). The initial condi-
tions for the simulations involve (unless otherwise stated)
a circle of radius Ry with a small perturbation involv-
ing a random distribution of eight modes in a quadrant.
The entire perturbation is periodically continued into the
other quadrants. A sample of the patterns that evolve is
shown in Fig. 1.

First one must consider if, as discussed above, there
are signs of an asymptotic region in which the effect of
the initial conditions has been eliminated. In Fig. 2 we
show, for fixed ¢ = 1, the behavior of the radius of gyra-
tion, Rq, for several scales of initial conditions. Dividing
by A'/2 amplifies differences. The data indicate that, ex-
cept for the largest initial condition, Ry = 1000, which
is not quite there yet, asymptotic behavior independent
of initial conditions is setting in toward the end of the
runs. To avoid cluttering the graph, one run for each ini-
tial scale has been shown; as will be seen, differences in
initial conditions for the same (g, Rp) are quickly washed
out.
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FIG. 1. Sample Hele-Shaw fourfold symmetric pattern

produced for the case Ro = 250,¢ = 1. The small “circle”
is the initial condition. The curves are not equally spaced in
time.

We note that the data even in these extensive simu-
lations will permit a reasonable fit to Rg ~ A%5% over
two decades of area variation. In Fig. 3 three runs with
(g = 1, Ry = 500) are accumulated, showing the fit cor-
responding to D = 1.82.

In Fig. 4 a set of flux values (¢ = 0.5,1, 2,4) with ran-
dom initial conditions all having the same scale, Ry =
500, are considered. According to Egs. (2.7) and (2.9),
in fractal growth, the “critical amplitude” depends on
Ly, and the curves with successive ¢ values should be
offset from one another. Using the estimate 8 = 0.14,
corresponding to D = 1.75 in the middle of the range of
fractal dimension suggested by experiments and earlier
simulations, yields the “error bar” in Fig. 4. Successive

0.00 T
X 125
-0.02 - gas0
A 500
s 004 ¥ 1000
< .
[6]
ol
o -0.06
°
-0.08
-0.10 X—-0
4.0 5.0
FIG. 2. Several runs with ¢ = 1 and different scales of

initial conditions showing that an asymptotic region of growth
independent of initial conditions is setting in. The symbol
labels correspond to values of Ryp.
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FIG. 3. Accumulated data for three runs with (¢ =
1, Ro = 500) showing that over a substantial range, appar-
ent fractal behavior describes the data. The slope of the line
is 0.55 corresponding to a dimension D 2¢ 1.82, in the range
of previous simulations and experiments.

curves for values of g differing by a factor of two should
be offset by that amount. One sees that, if the data are
approaching straight lines, the offset is likely to be less
than that, suggesting that 8 = 0.14 is not the asymptotic
value but rather is an overestimate. If the curves for dif-
ferent ¢ values approach one another and a horizontal
asymptote, it would be consistent with 8 = 0, indicat-
ing a compact structure. Note that different realizations
for the same (g, Rp) fall closer together than curves for
differing gq.

We look more closely, now, whether even these ex-
tended simulations are truly asymptotic and whether the
fractal dimension D = 1.7-1.8 extracted from experimen-
tal and numerical log-log plots is representing asymptotic
data. If we assume the initial condition is irrelevant in
the asymptotic behavior, it follows from Eq. (2.5) that in

0.05 T T
0.00 + i
<
[&)
o L
=3 '0.05 [ 7
o
°
-0.10 |- 1
5.0 6.0 7.0 8.0
log,, A
FIG. 4. Runs for different relative flux values with ini-

tial condition characterized by Ro = 500. This shows that
the data for different ¢ values appear to be converging. For
asymptotic fractal behavior one expects successive curves to
be separated by the amount indicated in the error bar.
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the asymptotic region, irrespective of whether or not the
patterns are fractal, one must have R(t)/A!/2 as a uni-
versal function of Q A'/2, for fixed dp and M. By varying
the relative flux q the asymptotics can be tested. The ex-
periments of Maher and co-workers did include a range
of flux values, but the overall precision available made it
difficult to pin down the exponent. In Fig. 5 the approach
to asymptotic behavior is examined for the same series of
relative values of the driving flux (¢ = 0.5, 1, 2,4). All the
curves should coincide if the data are asymptotic. Clearly
only the latest time data are beginning to show signs of
collapse. If the merging curves are slowly diverging to
infinity as A — oo, the structure is fractal. If, however,
they are approaching a constant, the structure is compact
with D = d = 2. Two straight lines for the asymptotic
behavior are shown as a guide. The slope of the collapsed
data yields the exponent 8. The steeper straight line cor-
responds to B = 0.14, or D = 1.75, while the shallower
line corresponds to 8 = 0.03 or D = 1.94. To obtain the
larger slope, regions in which the data clearly do not col-
lapse, i.e., are not asymptotic, must be included. Even
with these more extensive simulations, only for a small
region at the end are there signs of asymptotic behav-
ior. Even if the combined curves are asymptotically di-
verging, assuming the final trend continues, the fractal
dimension will be so close to D = d = 2 that it would
be difficult for a laboratory experiment or a simulation
to distinguish the structure from a compact one. How-
ever, there is the possibility that there are oscillations
and that the collapsed data will systematically diverge
as gA'/? is increased, with a power more like 8 = 0.14.
We will return to this possibility below.

A method to consider the trends in a more quantitative
manner is to look at the “effective exponent” defined by

—1 _ dlogyo(Ra)
7 dlogyo(A)

We show in Fig. 6 effective exponents for ¢ = 1 with
several scales for the initial conditions [26]. The oscil-

= (1 + ﬂeff)/z (3'1)

L slope=0.14
0.00 -
o slope=0.03
< |
x -0.05
_?_; ®qg=1/2
Og=1
[ A Qq=2
-0.10 X 3:4
2.0 3.0 40
log,, gA™
FIG. 5. Scaled data indicating the beginnings of asymp-

totic collapse. The slope corresponds to the anomalous expo-
nent 3. The different relative flux values are indicated, and
for all runs Ro = 500.
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FIG. 6. Effective exponent for several runs with ¢ = 1.
The symbols label the scale of the initial condition, Rg. The
effective exponent is an estimate of the inverse of the fractal
dimension, D!,

lations are seen as is the trend toward lower values of
Befr as the scale of the initial condition is decreased. For
Fig. 7 four extended runs corresponding to different ini-
tial conditions with ¢ = 1, Ry = 125 were performed.
The oscillations tend to occur at different places (reflect-
ing the specific initial condition) and averaged data are
smoother. Figure 7 indicates a trend to small and possi-
bly vanishing values of 3.

IV. CONCLUDING REMARKS

While we cannot rule out asymptotic fractal growth
with an exponent much closer to D = d = 2 than
previously suggested, our conclusion is that for flow at
constant flux in circular geometry, the structures which
evolve are not asymptotically fractal. Notice once again
in Fig. 1 that some attempts at tip splitting are annealed,
and if that trend continues, the pattern will not become
more complex. The surface tension, while controlling

0.540 —— T T
n N
+= 0.530 + 8
[}
c
o E
Q
>
W 0520 - 1
[¢}]
=
©
£ - d over 4 set
5 0510 | averaged over 4 sets |
O averaged over 1-3 sets
0.500 ! ‘ R—
0.0000 0.0005 0.0010 0.0015
Ar1/2

FIG. 7. Effective exponent for four extensive runs with
q = 1, Ro = 125, showing the average and the spread of the
data.

1091

bends in the interface only on the smallest length scales,
makes itself felt on the largest scales and, in spite of the
screening inherent in Laplacian problems, prevents frac-
tal structure. In the language of critical phenomena, the
surface tension does not appear to introduce anomalous
dimension. For fixed dy and A'/2 — oo the scaling func-
tion goes smoothly to a constant.

Some interesting features and possibilities are worthy
of additional consideration. First, the simulations for
individual runs give clear indication of the oscillations
predicted by Sarkar [27] in a mean-field theory of the tip-
splitting cascade. This makes determinations from lim-
ited data exceptionally difficult. Sarkar’s theory, while
representing an important advance, is, unfortunately, not
parameter free and is not inconsistent with asymptoti-
cally compact viscous-fingering patterns. A very inter-
esting question arises as to the nature of the crossover,
since apparently experiments and any future simulations
are surely to lie in the crossover regime. One may ask
whether it is possible to have an asymptotically compact
structure and yet an infinite range of fractal behavior.
If there are only a finite number of decades of apparent
fractal behavior, then an entire experiment can be con-
sidered to be in a transient regime. Heuristic arguments
suggest a transient regime of approximate DLA-like be-
havior which gets wider the smaller one makes Lo ~ dg.

To see this, consider again the full scaling in the form
of Eq. (2.10). Based on the numerical simulations and
other arguments given above, the scaling function must
satisfy

fo for fixedoo >y >0 as x — 0, (4.1)
flz;y) — {go(:vy)‘ﬁ as y — o0, zy — 0, (4.2)
goxy with xy — oo, (4.3)

where fo, go, and g are constants. The first line em-
bodies asymptotic compactness; the second line produces
genuine fractal behavior (at large enough area) for zero
surface tension; the third line says that at early time
AA — 0 and R must be on the order of Ry. An ap-
proximant which satisfies all the requirements is of the
form

£@) = h(z) [o5 @0 + 1] +aaryll—h(a))
(4.4)

where h(z) is a smooth crossover function going from
unity for x < z; = O(1) to zero for = > z;. This will
reproduce qualitatively the shape seen in Fig. 4, but with
B =0, i.e., with the curves asymptotically flattening out.
A small finite 8 # 0 could easily be incorporated. A
range of DLA-like behavior characterized by anomalous
exponent 3’ will exist for 1 > = > (g0/f0)'/?/y. The
larger y = Ro/Lo is, the wider is the apparent fractal
range. In the limit Ly — 0, the range can be infinite.
Recalling that y > 1 for small do (surface tension) or at
large flux, @, these arguments suggest that only in the
limit of vanishing surface tension (or infinite flux) will
the fractal range be infinite. A crossover from fractal to
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compact structure in terms of viscosity contrast has been
discussed by Lee, Coniglio, and Stanley [28).

We have been imagining that the scaling function
f(z;y) describes the average over a set of initial con-
ditions; accordingly the average may wash out the oscil-
lations predicted by Sarkar [27]. Within the basic dimen-
sional analysis, an analogous scaling can be presented for
a single run, but additional dimensionless parameters are
needed to specify the initial condition. Sarkar [29] has
recently performed an interesting analysis of the fractal
regime making detailed comparisons between numerical
calculations and laboratory experiments to, among other
things, test the adequacy of the modeling.

Comments on the other common operating condition,
constant pressure, are in order. A new length R; en-
ters the problem, representing the outer ring with fixed
pressure (atmospheric, in a laboratory experiment). The
equations cannot be made parameter-free in that case
[12,17]. Only in an intermediate regime, when the radius
of gyration is much greater than the initial condition but
much smaller than the outer ring, can the structure be
fractal. But when the outer ring size does not matter,
there should not be a material difference between con-
stant pressure and constant flux. It is therefore likely
that patterns under constant pressure are fractal only in
an intermediate regime, but the evolution to a compact
shape (in any reasonable experiment) may be interfered
with by the presence of the outer boundaries.

Reanalysis of the nature of the scaling of viscous fin-
gering in a circular Hele-Shaw cell combined with addi-

tional simulations at constant flux thus strongly suggests
that the growth patterns are not asymptotically fractal
[30]. There is not much in the way of intuitive under-
standing of this result as it has been previously shown
[17] that the quasilinear analysis of Refs. [3, 4] are incon-
clusive. This “simplest” of all pattern forming systems
remains intriguing. Additional understanding can per-
haps be obtained via a suitable modification of Sarkar’s
[27] mean-field theory of the tip-splitting hierarchy.

Finally we note that this approach of carefully examin-
ing the implications of dimensional analysis to determine
if data are asymptotic can be applied to a variety of re-
lated problems which are expected to yield power-law
growth. An interesting example is that of spinodal de-
composition in which case the analog of Ry could be the
correlation length of the initial state.
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